STAGE DE RECHERCHE de MASTER 2ème ANNEE

Master SOAC / WAPE

Année Universitaire 2025-2026

LABORATOIRE: LSCE

SUJET DU STAGE : Rôle des sédiments dans le cycle du carbone au Dernier

Maximum Glaciaire

COORDONNEES DU RESPONSABLE:

Nom - Prénom : Bouttes Nathaelle

Adresse: Bat 714, LSCE, CEA Orme des Merisiers, 91191 Gif sur Yvette

Téléphone: 0783843497

E-mail: Nathaelle.bouttes@lsce.ipsl.fr

Autres encadrants : Didier Roche (LSCE), Guy Munhoven (Université de Liège)

NATURE DU SUJET:

Théorie	Pas du tout	Un peu	Beaucoup
Modélisation num.	Pas du tout	Un peu	Beaucoup
Expérimentation	Pas du tout	Un peu	Beaucoup
Analyse de données	Pas du tout	Un peu	Beaucoup
Instrumentation	Pas du tout	Un peu	Beaucoup

SUJET:

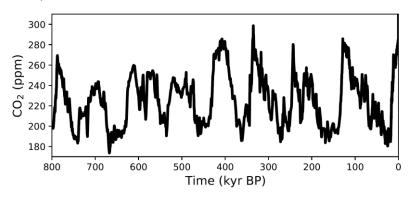


Figure 1. Evolution du CO_2 atmosphérique, données de Bereiter et al. (2015).

Durant le dernier million d'année, les climat alterne tous les 100 000 ans environ entre des phases froides glaciaires et des phases chaudes interglaciaires. Lors périodes glaciaires, le climat global moyen est plus froid d'environ 5°C, les calottes de glace sont très étendues dans l'hémisphère Nord, recouvrant une large partie de l'Amérique du Nord et de l'Eurasie, et le niveau marin est plus bas

d'environ 120 m comparé aux interglaciaires. Ce climat plus froid s'explique en partie par des concentrations en CO₂ dans l'atmosphère plus basses, d'environ 180 ppm contre 280 ppm en période interglaciaire (Figure 1). De nombreuses hypothèses ont été avancées pour expliquer la baisse du CO₂ atmosphérique, comme une activité biologique accrue dans l'océan Austral, ou un changement de circulation océanique. Néanmoins, malgré leur intégration dans les modèles

numériques de climat, ces changements ne suffisent pas à baisser suffisamment le CO₂ dans l'atmosphère pour représenter la baisse mesurée.

Des simulations ont montré l'amplification du stockage de carbone dans l'océan par les interactions avec les sédiments sont clés pour obtenir une concentration en CO₂ atmosphérique plus faible (Kobayashi et al., 2021), mais ces simulations étaient réalisées avec un modèle d'océan uniquement, sans les rétroactions avec la biosphère terrestre. Dans ce stage nous allons tester cette hypothèse avec une nouvelle configuration du modèle de climat iLOVECLIM (Goosse et al., 2010; Bouttes et al., 2015) couplé avec le modèle de sédiments MEDUSA (Munhoven, 2021; Figure 2). Afin d'améliorer le modèle, nous ajouterons tout d'abord le cycle de la silice, pour l'instant manquant, dans le modèle. En effet, le modèle de biogéochimie marine ne

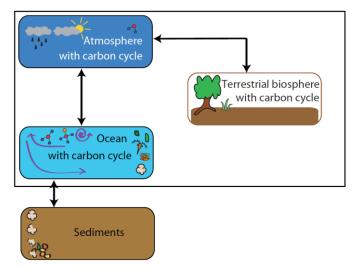


Figure 2. Schéma du modèle iLOVECLIM avec le module de sédiments.

considère pour l'instant que les organismes fabriquant une coquille (test) en carbonate de calcium, et pas ceux dont la coquille est en silice. Puis nous réaliserons une série de simulation avec ou sans changements de la production biologique, de la circulation océanique et du couplage avec les sédiments pour évaluer la réponse du modèle. Nous analyserons et quantifierons l'adéquation avec les données mesurées existantes, en particulier le CO₂ atmosphérique, ainsi que les isotopes du carbone mesurés dans les carottes de glace et dans les carottes de sédiment marin.

Ce stage fait partie du projet ANR TICMY. L'étudiant e bénéficiera du cluster de calcul du LSCE sur lequel tourne le modèle considéré pour ce stage.

Références

Bouttes et al., 2015, doi: 10.5194/gmd-8-1563-2015 Goosse et al., 2010, doi: 10.5194/gmd-3-603-2010, 2010. Kobayashi et al., 2021, doi: 10.1126/sciadv.abg7723 Munhoven, 2021, doi: 10.5194/gmd-14-3603-2021

POURSUITE:

Ce stage peut-il donner lieu à un sujet de thèse ? Oui

Noter que le stage de M2 peut être totalement indépendant du sujet de thèse.

,